
Tutorial: Get started with EF Core in an

ASP.NET MVC web app

This tutorial teaches ASP.NET Core MVC and Entity Framework Core with controllers and

views. Razor Pages is an alternative programming model. For new development, we

recommend Razor Pages over MVC with controllers and views. See the Razor

Pages version of this tutorial. Each tutorial covers some material the other doesn't:

Some things this MVC tutorial has that the Razor Pages tutorial doesn't:

• Implement inheritance in the data model

• Perform raw SQL queries

• Use dynamic LINQ to simplify code

Some things the Razor Pages tutorial has that this one doesn't:

• Use Select method to load related data

• Best practices for EF.

The Contoso University sample web application demonstrates how to create ASP.NET

Core 2.2 MVC web applications using Entity Framework (EF) Core 2.2 and Visual Studio

2017 or 2019.

This tutorial has not been updated for ASP.NET Core 3.1. It has been updated

for ASP.NET Core 5.0.

The sample application is a web site for a fictional Contoso University. It includes

functionality such as student admission, course creation, and instructor assignments.

This is the first in a series of tutorials that explain how to build the Contoso University

sample application from scratch.

Prerequisites

• .NET Core SDK 2.2

• Visual Studio 2019 with the following workloads:

o ASP.NET and web development workload

o .NET Core cross-platform development workload

Troubleshooting

https://docs.microsoft.com/en-gb/aspnet/core/razor-pages/?view=aspnetcore-3.1
https://docs.microsoft.com/en-gb/aspnet/core/data/ef-rp/intro?view=aspnetcore-3.1
https://docs.microsoft.com/en-gb/aspnet/core/data/ef-rp/intro?view=aspnetcore-3.1
https://docs.microsoft.com/en-gb/aspnet/core/data/ef-mvc/intro?view=aspnetcore-5.0
https://dotnet.microsoft.com/download
https://visualstudio.microsoft.com/downloads/?utm_medium=microsoft&utm_source=docs.microsoft.com&utm_campaign=inline+link&utm_content=download+vs2019

If you run into a problem you can't resolve, you can generally find the solution by

comparing your code to the completed project. For a list of common errors and how to

solve them, see the Troubleshooting section of the last tutorial in the series. If you don't

find what you need there, you can post a question to StackOverflow.com for ASP.NET

Core or EF Core.

 Tip

This is a series of 10 tutorials, each of which builds on what is done in earlier tutorials.

Consider saving a copy of the project after each successful tutorial completion. Then if

you run into problems, you can start over from the previous tutorial instead of going

back to the beginning of the whole series.

Contoso University web app

The application you'll be building in these tutorials is a simple university web site.

Users can view and update student, course, and instructor information. Here are a few of

the screens you'll create.

https://github.com/dotnet/AspNetCore.Docs/tree/main/aspnetcore/data/ef-mvc/intro/samples
https://docs.microsoft.com/en-gb/aspnet/core/data/ef-mvc/advanced?view=aspnetcore-3.1#common-errors
https://stackoverflow.com/questions/tagged/asp.net-core
https://stackoverflow.com/questions/tagged/asp.net-core
https://stackoverflow.com/questions/tagged/entity-framework-core

Create web app

• Open Visual Studio.

• From the File menu, select New > Project.

• From the left pane, select Installed > Visual C# > Web.

• Select the ASP.NET Core Web Application project template.

• Enter ContosoUniversity as the name and click OK.

• Wait for the New ASP.NET Core Web Application dialog to appear.

• Select .NET Core, ASP.NET Core 2.2 and the Web Application (Model-

View-Controller) template.

• Make sure Authentication is set to No Authentication.

• Select OK

Set up the site style

A few simple changes will set up the site menu, layout, and home page.

Open Views/Shared/_Layout.cshtml and make the following changes:

• Change each occurrence of "ContosoUniversity" to "Contoso University".

There are three occurrences.

• Add menu entries for About, Students, Courses, Instructors,

and Departments, and delete the Privacy menu entry.

The changes are highlighted.

CSHTMLCopy
<!DOCTYPE html>
<html>
<head>
 <meta charset="utf-8" />
 <meta name="viewport" content="width=device-width, initial-scale=1.0" />
 <title>@ViewData["Title"] - Contoso University</title>

 <environment include="Development">
 <link rel="stylesheet" href="~/lib/bootstrap/dist/css/bootstrap.css" />
 </environment>
 <environment exclude="Development">
 <link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/twitter-
bootstrap/4.1.3/css/bootstrap.min.css"
 asp-fallback-href="~/lib/bootstrap/dist/css/bootstrap.min.css"
 asp-fallback-test-class="sr-only" asp-fallback-test-property="position"
asp-fallback-test-value="absolute"
 crossorigin="anonymous"
 integrity="sha256-eSi1q2PG6J7g7ib17yAaWMcrr5GrtohYChqibrV7PBE="/>
 </environment>
 <link rel="stylesheet" href="~/css/site.css" />
</head>
<body>
 <header>
 <nav class="navbar navbar-expand-sm navbar-toggleable-sm navbar-light bg-
white border-bottom box-shadow mb-3">
 <div class="container">
 <a class="navbar-brand" asp-area="" asp-controller="Home" asp-
action="Index">Contoso University
 <button class="navbar-toggler" type="button" data-toggle="collapse"
data-target=".navbar-collapse" aria-controls="navbarSupportedContent"
 aria-expanded="false" aria-label="Toggle navigation">

 </button>
 <div class="navbar-collapse collapse d-sm-inline-flex flex-sm-row-
reverse">
 <ul class="navbar-nav flex-grow-1">
 <li class="nav-item">
 <a class="nav-link text-dark" asp-area="" asp-
controller="Home" asp-action="Index">Home

 <li class="nav-item">
 <a class="nav-link text-dark" asp-area="" asp-
controller="Home" asp-action="About">About

 <li class="nav-item">
 <a class="nav-link text-dark" asp-area="" asp-
controller="Students" asp-action="Index">Students

 <li class="nav-item">
 <a class="nav-link text-dark" asp-area="" asp-
controller="Courses" asp-action="Index">Courses

 <li class="nav-item">
 <a class="nav-link text-dark" asp-area="" asp-
controller="Instructors" asp-action="Index">Instructors

 <li class="nav-item">
 <a class="nav-link text-dark" asp-area="" asp-
controller="Departments" asp-action="Index">Departments

 </div>
 </div>
 </nav>
 </header>
 <div class="container">
 <partial name="_CookieConsentPartial" />
 <main role="main" class="pb-3">
 @RenderBody()
 </main>
 </div>

 <footer class="border-top footer text-muted">
 <div class="container">
 © 2019 - Contoso University - <a asp-area="" asp-controller="Home"
asp-action="Privacy">Privacy
 </div>
 </footer>

 <environment include="Development">
 <script src="~/lib/jquery/dist/jquery.js"></script>
 <script src="~/lib/bootstrap/dist/js/bootstrap.bundle.js"></script>
 </environment>
 <environment exclude="Development">
 <script
src="https://cdnjs.cloudflare.com/ajax/libs/jquery/3.3.1/jquery.min.js"
 asp-fallback-src="~/lib/jquery/dist/jquery.min.js"
 asp-fallback-test="window.jQuery"
 crossorigin="anonymous"
 integrity="sha256-FgpCb/KJQlLNfOu91ta32o/NMZxltwRo8QtmkMRdAu8=">
 </script>
 <script src="https://cdnjs.cloudflare.com/ajax/libs/twitter-
bootstrap/4.1.3/js/bootstrap.bundle.min.js"
 asp-fallback-src="~/lib/bootstrap/dist/js/bootstrap.bundle.min.js"
 asp-fallback-test="window.jQuery && window.jQuery.fn &&
window.jQuery.fn.modal"
 crossorigin="anonymous"
 integrity="sha256-E/V4cWE4qvAeO5MOhjtGtqDzPndRO1LBk8lJ/PR7CA4=">
 </script>
 </environment>
 <script src="~/js/site.js" asp-append-version="true"></script>

 @RenderSection("Scripts", required: false)
</body>
</html>

In Views/Home/Index.cshtml, replace the contents of the file with the following code to

replace the text about ASP.NET and MVC with text about this application:

CSHTMLCopy
@{
 ViewData["Title"] = "Home Page";
}

<div class="jumbotron">
 <h1>Contoso University</h1>
</div>
<div class="row">
 <div class="col-md-4">
 <h2>Welcome to Contoso University</h2>

 <p>
 Contoso University is a sample application that
 demonstrates how to use Entity Framework Core in an
 ASP.NET Core MVC web application.
 </p>
 </div>
 <div class="col-md-4">
 <h2>Build it from scratch</h2>
 <p>You can build the application by following the steps in a series of
tutorials.</p>
 <p><a class="btn btn-default" href="https://docs.asp.net/en/latest/data/ef-
mvc/intro.html">See the tutorial »</p>
 </div>
 <div class="col-md-4">
 <h2>Download it</h2>
 <p>You can download the completed project from GitHub.</p>
 <p><a class="btn btn-default"
href="https://github.com/dotnet/AspNetCore.Docs/tree/main/aspnetcore/data/ef-
mvc/intro/samples/cu-final">See project source code »</p>
 </div>
</div>

Press CTRL+F5 to run the project or choose Debug > Start Without Debugging from

the menu. You see the home page with tabs for the pages you'll create in these tutorials.

About EF Core NuGet packages

To add EF Core support to a project, install the database provider that you want to

target. This tutorial uses SQL Server, and the provider package

is Microsoft.EntityFrameworkCore.SqlServer. This package is included in

the Microsoft.AspNetCore.App metapackage, so you don't need to reference the

package.

https://www.nuget.org/packages/Microsoft.EntityFrameworkCore.SqlServer/
https://docs.microsoft.com/en-gb/aspnet/core/fundamentals/metapackage-app?view=aspnetcore-3.1

The EF SQL Server package and its dependencies

(Microsoft.EntityFrameworkCore and Microsoft.EntityFrameworkCore.Relational) provide

runtime support for EF. You'll add a tooling package later, in the Migrations tutorial.

For information about other database providers that are available for Entity Framework

Core, see Database providers.

Create the data model

Next you'll create entity classes for the Contoso University application. You'll start with

the following three entities.

There's a one-to-many relationship between Student and Enrollment entities, and there's

a one-to-many relationship between Course and Enrollment entities. In other words, a

student can be enrolled in any number of courses, and a course can have any number of

students enrolled in it.

In the following sections you'll create a class for each one of these entities.

The Student entity

In the Models folder, create a class file named Student.cs and replace the template code

with the following code.

https://docs.microsoft.com/en-gb/aspnet/core/data/ef-mvc/migrations?view=aspnetcore-3.1
https://docs.microsoft.com/en-us/ef/core/providers/

C#Copy
using System;
using System.Collections.Generic;

namespace ContosoUniversity.Models
{
 public class Student
 {
 public int ID { get; set; }
 public string LastName { get; set; }
 public string FirstMidName { get; set; }
 public DateTime EnrollmentDate { get; set; }

 public ICollection<Enrollment> Enrollments { get; set; }
 }
}

The ID property will become the primary key column of the database table that

corresponds to this class. By default, the Entity Framework interprets a property that's

named ID or classnameID as the primary key.

The Enrollments property is a navigation property. Navigation properties hold other

entities that are related to this entity. In this case, the Enrollments property of a Student

entity will hold all of the Enrollment entities that are related to that Student entity. In

other words, if a Student row in the database has two related Enrollment rows (rows that

contain that student's primary key value in their StudentID foreign key column),

that Student entity's Enrollments navigation property will contain those

two Enrollment entities.

If a navigation property can hold multiple entities (as in many-to-many or one-to-many

relationships), its type must be a list in which entries can be added, deleted, and

updated, such as ICollection<T>. You can specify ICollection<T> or a type such

as List<T> or HashSet<T>. If you specify ICollection<T>, EF creates a HashSet<T> collection

by default.

The Enrollment entity

In the Models folder, create Enrollment.cs and replace the existing code with the

following code:

https://docs.microsoft.com/en-us/ef/core/modeling/relationships

C#Copy
namespace ContosoUniversity.Models
{
 public enum Grade
 {
 A, B, C, D, F
 }

 public class Enrollment
 {
 public int EnrollmentID { get; set; }
 public int CourseID { get; set; }
 public int StudentID { get; set; }
 public Grade? Grade { get; set; }

 public Course Course { get; set; }
 public Student Student { get; set; }
 }
}

The EnrollmentID property will be the primary key; this entity uses

the classnameID pattern instead of ID by itself as you saw in the Student entity. Ordinarily

you would choose one pattern and use it throughout your data model. Here, the

variation illustrates that you can use either pattern. In a later tutorial, you'll see how

using ID without classname makes it easier to implement inheritance in the data model.

The Grade property is an enum. The question mark after the Grade type declaration

indicates that the Grade property is nullable. A grade that's null is different from a zero

grade -- null means a grade isn't known or hasn't been assigned yet.

The StudentID property is a foreign key, and the corresponding navigation property

is Student. An Enrollment entity is associated with one Student entity, so the property can

only hold a single Student entity (unlike the Student.Enrollments navigation property you

saw earlier, which can hold multiple Enrollment entities).

The CourseID property is a foreign key, and the corresponding navigation property

is Course. An Enrollment entity is associated with one Course entity.

Entity Framework interprets a property as a foreign key property if it's

named <navigation property name><primary key property name> (for

example, StudentID for the Student navigation property since the Student entity's primary

key is ID). Foreign key properties can also be named simply <primary key property

name> (for example, CourseID since the Course entity's primary key is CourseID).

The Course entity

https://docs.microsoft.com/en-gb/aspnet/core/data/ef-mvc/inheritance?view=aspnetcore-3.1

In the Models folder, create Course.cs and replace the existing code with the following

code:

C#Copy
using System.Collections.Generic;
using System.ComponentModel.DataAnnotations.Schema;

namespace ContosoUniversity.Models
{
 public class Course
 {
 [DatabaseGenerated(DatabaseGeneratedOption.None)]
 public int CourseID { get; set; }
 public string Title { get; set; }
 public int Credits { get; set; }

 public ICollection<Enrollment> Enrollments { get; set; }
 }
}

The Enrollments property is a navigation property. A Course entity can be related to any

number of Enrollment entities.

We'll say more about the DatabaseGenerated attribute in a later tutorial in this series.

Basically, this attribute lets you enter the primary key for the course rather than having

the database generate it.

Create the database context

The main class that coordinates Entity Framework functionality for a given data model is

the database context class. You create this class by deriving from

the Microsoft.EntityFrameworkCore.DbContext class. In your code you specify which

entities are included in the data model. You can also customize certain Entity Framework

behavior. In this project, the class is named SchoolContext.

In the project folder, create a folder named Data.

In the Data folder create a new class file named SchoolContext.cs, and replace the

template code with the following code:

C#Copy

https://docs.microsoft.com/en-gb/aspnet/core/data/ef-mvc/complex-data-model?view=aspnetcore-3.1

using ContosoUniversity.Models;
using Microsoft.EntityFrameworkCore;

namespace ContosoUniversity.Data
{
 public class SchoolContext : DbContext
 {
 public SchoolContext(DbContextOptions<SchoolContext> options) : base(options)
 {
 }

 public DbSet<Course> Courses { get; set; }
 public DbSet<Enrollment> Enrollments { get; set; }
 public DbSet<Student> Students { get; set; }
 }
}

This code creates a DbSet property for each entity set. In Entity Framework terminology,

an entity set typically corresponds to a database table, and an entity corresponds to a

row in the table.

You could've omitted the DbSet<Enrollment> and DbSet<Course> statements and it would

work the same. The Entity Framework would include them implicitly because

the Student entity references the Enrollment entity and the Enrollment entity references

the Course entity.

When the database is created, EF creates tables that have names the same as

the DbSet property names. Property names for collections are typically plural (Students

rather than Student), but developers disagree about whether table names should be

pluralized or not. For these tutorials you'll override the default behavior by specifying

singular table names in the DbContext. To do that, add the following highlighted code

after the last DbSet property.

C#Copy
using ContosoUniversity.Models;
using Microsoft.EntityFrameworkCore;

namespace ContosoUniversity.Data
{
 public class SchoolContext : DbContext
 {
 public SchoolContext(DbContextOptions<SchoolContext> options) : base(options)
 {
 }

 public DbSet<Course> Courses { get; set; }
 public DbSet<Enrollment> Enrollments { get; set; }
 public DbSet<Student> Students { get; set; }

 protected override void OnModelCreating(ModelBuilder modelBuilder)
 {
 modelBuilder.Entity<Course>().ToTable("Course");
 modelBuilder.Entity<Enrollment>().ToTable("Enrollment");
 modelBuilder.Entity<Student>().ToTable("Student");
 }
 }

}

Build the project as a check for compiler errors.

Register the SchoolContext

ASP.NET Core implements dependency injection by default. Services (such as the EF

database context) are registered with dependency injection during application startup.

Components that require these services (such as MVC controllers) are provided these

services via constructor parameters. You'll see the controller constructor code that gets

a context instance later in this tutorial.

To register SchoolContext as a service, open Startup.cs, and add the highlighted lines to

the ConfigureServices method.

C#Copy
public void ConfigureServices(IServiceCollection services)
{
 services.Configure<CookiePolicyOptions>(options =>
 {
 options.CheckConsentNeeded = context => true;
 options.MinimumSameSitePolicy = SameSiteMode.None;
 });

 services.AddDbContext<SchoolContext>(options =>

options.UseSqlServer(Configuration.GetConnectionString("DefaultConnection")));

 services.AddMvc();
}

The name of the connection string is passed in to the context by calling a method on

a DbContextOptionsBuilder object. For local development, the ASP.NET Core

configuration system reads the connection string from the appsettings.json file.

Add using statements

for ContosoUniversity.Data and Microsoft.EntityFrameworkCore namespaces, and then

build the project.

C#Copy
using ContosoUniversity.Data;
using Microsoft.EntityFrameworkCore;
using Microsoft.AspNetCore.Http;

Open the appsettings.json file and add a connection string as shown in the following

example.

JSONCopy
{
 "ConnectionStrings": {

https://docs.microsoft.com/en-gb/aspnet/core/fundamentals/dependency-injection?view=aspnetcore-3.1
https://docs.microsoft.com/en-gb/aspnet/core/fundamentals/configuration/?view=aspnetcore-3.1
https://docs.microsoft.com/en-gb/aspnet/core/fundamentals/configuration/?view=aspnetcore-3.1

 "DefaultConnection":
"Server=(localdb)\\mssqllocaldb;Database=ContosoUniversity1;Trusted_Connection=True;M
ultipleActiveResultSets=true"
 },
 "Logging": {
 "IncludeScopes": false,
 "LogLevel": {
 "Default": "Warning"
 }
 }
}

SQL Server Express LocalDB

The connection string specifies a SQL Server LocalDB database. LocalDB is a lightweight

version of the SQL Server Express Database Engine and is intended for application

development, not production use. LocalDB starts on demand and runs in user mode, so

there's no complex configuration. By default, LocalDB creates .mdf database files in

the C:/Users/<user> directory.

Initialize DB with test data

The Entity Framework will create an empty database for you. In this section, you write a

method that's called after the database is created in order to populate it with test data.

Here you'll use the EnsureCreated method to automatically create the database. In a later

tutorial you'll see how to handle model changes by using Code First Migrations to

change the database schema instead of dropping and re-creating the database.

In the Data folder, create a new class file named DbInitializer.cs and replace the

template code with the following code, which causes a database to be created when

needed and loads test data into the new database.

C#Copy
using ContosoUniversity.Models;
using System;
using System.Linq;

namespace ContosoUniversity.Data
{
 public static class DbInitializer
 {
 public static void Initialize(SchoolContext context)
 {
 context.Database.EnsureCreated();

 // Look for any students.
 if (context.Students.Any())
 {
 return; // DB has been seeded
 }

 var students = new Student[]
 {

https://docs.microsoft.com/en-gb/aspnet/core/data/ef-mvc/migrations?view=aspnetcore-3.1
https://docs.microsoft.com/en-gb/aspnet/core/data/ef-mvc/migrations?view=aspnetcore-3.1

 new
Student{FirstMidName="Carson",LastName="Alexander",EnrollmentDate=DateTime.Parse("200
5-09-01")},
 new
Student{FirstMidName="Meredith",LastName="Alonso",EnrollmentDate=DateTime.Parse("2002
-09-01")},
 new
Student{FirstMidName="Arturo",LastName="Anand",EnrollmentDate=DateTime.Parse("2003-
09-01")},
 new
Student{FirstMidName="Gytis",LastName="Barzdukas",EnrollmentDate=DateTime.Parse("2002
-09-01")},
 new
Student{FirstMidName="Yan",LastName="Li",EnrollmentDate=DateTime.Parse("2002-09-
01")},
 new
Student{FirstMidName="Peggy",LastName="Justice",EnrollmentDate=DateTime.Parse("2001-
09-01")},
 new
Student{FirstMidName="Laura",LastName="Norman",EnrollmentDate=DateTime.Parse("2003-
09-01")},
 new
Student{FirstMidName="Nino",LastName="Olivetto",EnrollmentDate=DateTime.Parse("2005-
09-01")}
 };
 foreach (Student s in students)
 {
 context.Students.Add(s);
 }
 context.SaveChanges();

 var courses = new Course[]
 {
 new Course{CourseID=1050,Title="Chemistry",Credits=3},
 new Course{CourseID=4022,Title="Microeconomics",Credits=3},
 new Course{CourseID=4041,Title="Macroeconomics",Credits=3},
 new Course{CourseID=1045,Title="Calculus",Credits=4},
 new Course{CourseID=3141,Title="Trigonometry",Credits=4},
 new Course{CourseID=2021,Title="Composition",Credits=3},
 new Course{CourseID=2042,Title="Literature",Credits=4}
 };
 foreach (Course c in courses)
 {
 context.Courses.Add(c);
 }
 context.SaveChanges();

 var enrollments = new Enrollment[]
 {
 new Enrollment{StudentID=1,CourseID=1050,Grade=Grade.A},
 new Enrollment{StudentID=1,CourseID=4022,Grade=Grade.C},
 new Enrollment{StudentID=1,CourseID=4041,Grade=Grade.B},
 new Enrollment{StudentID=2,CourseID=1045,Grade=Grade.B},
 new Enrollment{StudentID=2,CourseID=3141,Grade=Grade.F},
 new Enrollment{StudentID=2,CourseID=2021,Grade=Grade.F},
 new Enrollment{StudentID=3,CourseID=1050},
 new Enrollment{StudentID=4,CourseID=1050},
 new Enrollment{StudentID=4,CourseID=4022,Grade=Grade.F},
 new Enrollment{StudentID=5,CourseID=4041,Grade=Grade.C},
 new Enrollment{StudentID=6,CourseID=1045},
 new Enrollment{StudentID=7,CourseID=3141,Grade=Grade.A},
 };

 foreach (Enrollment e in enrollments)
 {
 context.Enrollments.Add(e);
 }
 context.SaveChanges();
 }
 }
}

The code checks if there are any students in the database, and if not, it assumes the

database is new and needs to be seeded with test data. It loads test data into arrays

rather than List<T> collections to optimize performance.

In Program.cs, modify the Main method to do the following on application startup:

• Get a database context instance from the dependency injection container.

• Call the seed method, passing to it the context.

• Dispose the context when the seed method is done.

C#Copy
using ContosoUniversity.Data;
using Microsoft.Extensions.DependencyInjection;
using Microsoft.AspNetCore.Hosting;
using Microsoft.Extensions.Hosting;
using Microsoft.Extensions.Logging;
using System;

namespace ContosoUniversity
{
 public class Program
 {
 public static void Main(string[] args)
 {
 var host = CreateHostBuilder(args).Build();

 CreateDbIfNotExists(host);

 host.Run();
 }

 private static void CreateDbIfNotExists(IHost host)
 {
 using (var scope = host.Services.CreateScope())
 {
 var services = scope.ServiceProvider;
 try
 {
 var context = services.GetRequiredService<SchoolContext>();
 DbInitializer.Initialize(context);
 }
 catch (Exception ex)
 {
 var logger = services.GetRequiredService<ILogger<Program>>();
 logger.LogError(ex, "An error occurred creating the DB.");
 }
 }
 }

 public static IHostBuilder CreateHostBuilder(string[] args) =>

 Host.CreateDefaultBuilder(args)
 .ConfigureWebHostDefaults(webBuilder =>
 {
 webBuilder.UseStartup<Startup>();
 });
 }
}

The first time you run the application, the database will be created and seeded with test

data. Whenever you change the data model:

• Delete the database.

• Update the seed method, and start afresh with a new database the same

way.

In later tutorials, you'll see how to modify the database when the data model changes,

without deleting and re-creating it.

Create controller and views

In this section, the scaffolding engine in Visual Studio is used to add an MVC controller

and views that will use EF to query and save data.

The automatic creation of CRUD action methods and views is known as scaffolding.

Scaffolding differs from code generation in that the scaffolded code is a starting point

that you can modify to suit your own requirements, whereas you typically don't modify

generated code. When you need to customize generated code, you use partial classes

or you regenerate the code when things change.

• Right-click the Controllers folder in Solution Explorer and select Add >

New Scaffolded Item.

• In the Add Scaffold dialog box:

o Select MVC controller with views, using Entity Framework.

o Click Add. The Add MVC Controller with views, using Entity

Framework dialog box

appears:

o In Model class select Student.

o In Data context class select SchoolContext.

o Accept the default StudentsController as the name.

o Click Add.

The Visual Studio scaffolding engine creates a StudentsController.cs file and a set of

views (.cshtml files) that work with the controller.

Notice the controller takes a SchoolContext as a constructor parameter.

C#Copy
namespace ContosoUniversity.Controllers
{
 public class StudentsController : Controller
 {
 private readonly SchoolContext _context;

 public StudentsController(SchoolContext context)
 {
 _context = context;
 }

ASP.NET Core dependency injection takes care of passing an instance

of SchoolContext into the controller. That was configured in the Startup.cs file.

The controller contains an Index action method, which displays all students in the

database. The method gets a list of students from the Students entity set by reading

the Students property of the database context instance:

C#Copy
public async Task<IActionResult> Index()
{
 return View(await _context.Students.ToListAsync());
}

You learn about the asynchronous programming elements in this code later in the

tutorial.

The Views/Students/Index.cshtml view displays this list in a table:

CSHTMLCopy
@model IEnumerable<ContosoUniversity.Models.Student>

@{
 ViewData["Title"] = "Index";
}

<h2>Index</h2>

<p>
 <a asp-action="Create">Create New
</p>
<table class="table">
 <thead>
 <tr>
 <th>
 @Html.DisplayNameFor(model => model.LastName)
 </th>
 <th>
 @Html.DisplayNameFor(model => model.FirstMidName)
 </th>
 <th>
 @Html.DisplayNameFor(model => model.EnrollmentDate)
 </th>
 <th></th>
 </tr>
 </thead>
 <tbody>
@foreach (var item in Model) {
 <tr>
 <td>
 @Html.DisplayFor(modelItem => item.LastName)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.FirstMidName)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.EnrollmentDate)
 </td>
 <td>
 <a asp-action="Edit" asp-route-id="@item.ID">Edit |
 <a asp-action="Details" asp-route-id="@item.ID">Details |
 <a asp-action="Delete" asp-route-id="@item.ID">Delete

 </td>
 </tr>
}
 </tbody>
</table>

Press CTRL+F5 to run the project or choose Debug > Start Without Debugging from

the menu.

Click the Students tab to see the test data that the DbInitializer.Initialize method

inserted. Depending on how narrow your browser window is, you'll see the Students tab

link at the top of the page or you'll have to click the navigation icon in the upper right

corner to see the link.

View the database

When you started the application, the DbInitializer.Initialize method

calls EnsureCreated. EF saw that there was no database and so it created one, then the

remainder of the Initialize method code populated the database with data. You can

use SQL Server Object Explorer (SSOX) to view the database in Visual Studio.

Close the browser.

If the SSOX window isn't already open, select it from the View menu in Visual Studio.

In SSOX, click (localdb)\MSSQLLocalDB > Databases, and then click the entry for the

database name that's in the connection string in the appsettings.json file.

Expand the Tables node to see the tables in the database.

Right-click the Student table and click View Data to see the columns that were created

and the rows that were inserted into the table.

The .mdf and .ldf database files are in the C:\Users\<username> folder.

Because you're calling EnsureCreated in the initializer method that runs on app start, you

could now make a change to the Student class, delete the database, run the application

again, and the database would automatically be re-created to match your change. For

example, if you add an EmailAddress property to the Student class, you'll see a

new EmailAddress column in the re-created table.

Conventions

The amount of code you had to write in order for the Entity Framework to be able to

create a complete database for you is minimal because of the use of conventions, or

assumptions that the Entity Framework makes.

• The names of DbSet properties are used as table names. For entities not

referenced by a DbSet property, entity class names are used as table names.

• Entity property names are used for column names.

• Entity properties that are named ID or classnameID are recognized as

primary key properties.

• A property is interpreted as a foreign key property if it's named <navigation

property name><primary key property name> (for example, StudentID for

the Student navigation property since the Student entity's primary key is ID).

Foreign key properties can also be named simply <primary key property

name> (for example, EnrollmentID since the Enrollment entity's primary key

is EnrollmentID).

Conventional behavior can be overridden. For example, you can explicitly specify table

names, as you saw earlier in this tutorial. And you can set column names and set any

property as primary key or foreign key, as you'll see in a later tutorial in this series.

Asynchronous code

Asynchronous programming is the default mode for ASP.NET Core and EF Core.

A web server has a limited number of threads available, and in high load situations all of

the available threads might be in use. When that happens, the server can't process new

requests until the threads are freed up. With synchronous code, many threads may be

tied up while they aren't actually doing any work because they're waiting for I/O to

complete. With asynchronous code, when a process is waiting for I/O to complete, its

thread is freed up for the server to use for processing other requests. As a result,

asynchronous code enables server resources to be used more efficiently, and the server

is enabled to handle more traffic without delays.

Asynchronous code does introduce a small amount of overhead at run time, but for low

traffic situations the performance hit is negligible, while for high traffic situations, the

potential performance improvement is substantial.

In the following code, the async keyword, Task<T> return value, await keyword,

and ToListAsync method make the code execute asynchronously.

C#Copy
public async Task<IActionResult> Index()
{
 return View(await _context.Students.ToListAsync());
}

• The async keyword tells the compiler to generate callbacks for parts of the

method body and to automatically create the Task<IActionResult> object

that's returned.

• The return type Task<IActionResult> represents ongoing work with a result

of type IActionResult.

• The await keyword causes the compiler to split the method into two parts.

The first part ends with the operation that's started asynchronously. The

https://docs.microsoft.com/en-gb/aspnet/core/data/ef-mvc/complex-data-model?view=aspnetcore-3.1

second part is put into a callback method that's called when the operation

completes.

• ToListAsync is the asynchronous version of the ToList extension method.

Some things to be aware of when you are writing asynchronous code that uses the

Entity Framework:

• Only statements that cause queries or commands to be sent to the

database are executed asynchronously. That includes, for

example, ToListAsync, SingleOrDefaultAsync, and SaveChangesAsync. It doesn't

include, for example, statements that just change an IQueryable, such as var

students = context.Students.Where(s => s.LastName == "Davolio").

• An EF context isn't thread safe: don't try to do multiple operations in

parallel. When you call any async EF method, always use the await keyword.

• If you want to take advantage of the performance benefits of async code,

make sure that any library packages that you're using (such as for paging),

also use async if they call any Entity Framework methods that cause queries

to be sent to the database.

